
+

Hashtable details
Sorting Revisited

+
Map/Hashtables

n  Each item is a key, value pair
n  for example

n  Key Value
n  studentId studentRecord
n  town+state Place
n  word Definition

n  Sometimes a Map is called a Dictionary

n  There is a Set of Keys

n  And a Collection of Values

n  Goal: efficient add and removal (no concern for order)

+
Map interface

n  public V put(K key, V value)

n  public V get(K key)

n  public V remove(K key)

n  The expected is O(1) for a Hashtable, but the worse case is
O(n)

n  A SortedHashMap has O(log n) insertion and removal

+
Hash Codes and Index Calculation

n The basis of hashing is to transform the item's key value
into an integer value (its hash code) which is then
transformed into a table index

+
Valid Keys

n  Keys are typically
n  numbers

n  characters (also numbers)

n  Strings (sequences of characters, which are numbers)

n  In Java, any Object can be a Key.
n  hashCode() can be overridden, and should be overridden if

equals has been overridden.

+
Goal

n  similar (really all) keys map to different locations

n  Question:
n  How do we map a large number of possible values to a much

smaller table size.

n  e.g. if we use just 10 letter strings of lowercase letters, then there
are 2610 possible keys.

n  Collisions cause the O(1) property to fail.

+
Potential Hashing functions

n  F1: (letter1 + letter2 + letter 3 … + letter n) % tablesize
n  ignores order of letters

n  F2 : use position and code for letter

n  F3 : Java uses 31^(position) * code(letter)

+
Desirable properties

n  codes generated are random
n  in int range

n  in int % tablesize range

n  easy to compute

+
Handling Collisions

n  open addressing
n  If there is a collision, check the next available spot until an open

spot is found

n  linear probing

n  quadratic probing

n  chaining
n  if there is a collision, add it to the bucket (a linked list)

+
Open Addressing Example
(Processing Sketches)

+
Problem with Open Addressing

n  removal
n  need to keep track of places that once held data

n  The chaining strategy removes this concern.

+
Chaining

n  When collide add to bucket (list)

n  removal just remove the item at the hash location from the list

+
Chaining Example (on board)

+
Performance of Hash tables

n  load factor = #filled cells / table size

n  lower load factor leads to better performance

n  higher load factor leads to worse performance.

+ Performance of Hash Tables versus Sorted
Array and Binary Search Tree

n  The number of comparisons required for a binary search of a sorted array
is O(log n)
n  A sorted array of size 128 requires up to 7 probes (27 is 128) which is more than

for a hash table of any size that is 90% full
n  A binary search tree performs similarly

n  Insertion or removal

 hash table O(1) expected; worst case
O(n)

unsorted array O(n)

binary search tree O(log n); worst case O(n)

+
Questions?

+
Balancing a Binary search tree

n  The key to all balanced tree methods is the concept of
rotation
n  rotate left

n  rotate right

+
Sorting Review

n  Selection Sort

n  Insertion Sort

n  Merge Sort

